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MATH 155/CALCULUS II/MYERS 
EXAM 2/8.8-9.6 

100 POINTS POSSIBLE 
 
Part I: (60 Points/10 Points each) Problems 1-7: Ascertain whether the infinite series 
converges or diverges. You must include the test, show how the condition(s) are met, run 
the test, and provide a conclusion. Please complete 6 out of the 7 problems. Be sure to 
write down your evil plan(s) or strategies; especially if you get stuck on a problem. Cross 
out the problem that you do not want graded. 
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Step 1: Identify the test(s) and conditions (if applicable). 

 

 

 

 

Step 2: Run the test. 

 

 

 

 

 

 

 

Step 3: Conclusion. 
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Step 1: Identify the test(s) and conditions (if applicable). 

 

 

 

 

Step 2: Run the test. 

 

 

 

 

 

 

 

 

Step 3: Conclusion. 
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Step 1: Identify the test(s) and conditions (if applicable). 

 

 

 

 

Step 2: Run the test. 

 

 

 

 

 

 

Step 3: Conclusion. 
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Step 1: Identify the test(s) and conditions (if applicable). 

 

 

 

 

 

 

 

Step 2: Run the test. 

 

 

 

 

 

 

 

 

Step 3: Conclusion. 
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Step 1: Identify the test(s) and conditions (if applicable). 

 

 

 

 

Step 2: Run the test. 

 

 

 

 

 

 

Step 3: Conclusion. 
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Step 1: Identify the test(s) and conditions (if applicable). 

 

 

 

 

 

Step 2: Run the test. 

 

 

 

 

 

 

Step 3: Conclusion. 
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Step 1: Identify the test(s) and conditions (if applicable). 

 

 

 

 

 

 

Step 2: Run the test. 

 

 

 

 

 

 

Step 3: Conclusion. 
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Part II: (30 points/10 points each) Problems 8-10. Complete the following problems. 

8. Evaluate the definite integral and determine whether it converges or diverges.
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9. Find the sum of the convergent series. 
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10. Determine whether the series converges absolutely or conditionally, or diverges. 
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Part II: (10 points/2 points each) Problems 11-15. True or False. 
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13.         T F If { }na is bounded and monotonic, { }na converges. 
 

14.         T F The nth Term Test may be used to show convergence. 
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